Empirical approximation ratios of binomial and Fibonacci strategies

Louis-Claude Canon
March 2, 2012

Let read the data and plot them in log-scale for the x-axis. The column `app.bino` corresponds to the cost of the binomial strategy when used as an approximation ($d = c$), `opt.fibo` is for an optimal usage of the Fibonacci strategy, etc.

```r
> D <- read.table("approximation.txt", header = TRUE)
> plot(app.bino/opt.fibo ~ n, data = D, type = "l", cex = 0.2,
+ pch = 3, col = 3, lwd = 3, log = "x", xlab = "Number of machines",
+ ylab = "Approximation ratio", main = "Approximation ratios of binomial and Fibonacci strategies")
> lines(app.fibo/opt.bino ~ n, data = D, type = "l", cex = 0.2,
+ pch = 1, col = 1, lwd = 1)
> legend("bottomright", c("binomial strategy", "Fibonacci strategy"),
+ col = c(3, 1), lwd = c(3, 1))
```

It could also be interesting to know the number of cases where the binomial and the Fibonacci strategies are optimal.

```r
> D[D[, "opt.bino"] == D[, "app.fibo"], "n"]
[1] 2 3 4 5 6 7 9 10 11 12 17 18 19 20 33
> D[D[, "opt.fibo"] == D[, "app.bino"], "n"]
[1] 2 4 9
```