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Motivation

» Express multitask operations without writing the thread logic.

» Rely on thread pools to limit thread management overhead (since Java 5).
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Generality Multicore Architecture
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Generality Classic Threads

Thread API

Interface Runnable:

void run()

Class Thread:

Thread ()

Thread (Runnable command)
static Thread currentThread()
void join() // synchronous
void run() // synchronous
static void sleep(long millis)
void start() // asynchronous
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Generality Classic Threads

Example of Thread Creation

class ExaRun implements Runnable {
public void run() {
System.out.println("Hello");
3
}

new Thread(new ExaRun()).start();
new Thread(() -> System.out.println("Hello")).start();

From now on, we avoid new Thread() and start, except when implementing an executor.
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Generality Problems with Threads
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Generality Problems with Threads

Problem 1: C10k Problem

As a motivational example, a server dealing with multiple requests:
» 1 connection: easy without thread
» 10/100 connections: easy with threads, possible without
» 1k connections: technical with threads, difficult without

» 10k connections: problem with only threads, easy with Erlang (green threads)
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Generality Problems with Threads

Thread Costs

Maximum number of concurrent threads:
» around 1 MB for each stack for recursive calls
P> at most 10k with 10 GB of RAM

Maximum rate of thread creations:
» around 0.1 ms per creation

P costly creation and destruction
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Generality Problems with Threads

Problem 2: Code Clarity

Low-level thread logic is:
» hard to reason with (difficult to debug)

» heavy to write (lot of synchronizations)

Louis-Claude Canon MCP — Executors 14 /58



Generality Problems with Threads

Example of Boilerplate Thread Code

int y = £(x);
int z = g(x);
System.out.println(y + z);

Result result = new Result();

Thread t1 = new Thread(() -> { result.left = f(x); });
Thread t2 = new Thread(() -> { result.right = g(x); });
tl.start();

t2.start();

t1l.join();

t2.join();

System.out.println(result.left + result.right);
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Generality Problems with Threads

Thread Synchronization
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Thread Pool Overview

Solution

Thread pool:
P one or a few long-running threads per core with several tasks to execute sequentially
» reuse threads (limited number of threads and fewer creations)
» provide features for synchronization

P alleviate both cost and clarity problems
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Thread Pool Overview

Preemption

» Each thread can be interrupted by the operating system for concurrency (to let others have
a time-share of a CPU core).

P> A task cannot be paused and goes back in the queue to let another task executes.
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Thread Pool Future and Task Interface
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Thread Pool Future and Task Interface

Future

v

Placeholder (like Optional) for a result that will be computed later.
Similar to promises.
Inspired by the conflict between RPC and message passing paradigm:

RPC Remote Procedure Call: easy to program with (close to sequential programming) but
synchronous (blocking).
Message passing Asynchronous but harder to reason about.

Futures/promises can be seen as messages to future self.
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Thread Pool Future and Task Interface

Future<V>

Class Future:

boolean cancel(boolean mayInterruptIfRunning)

V get() // synchronous

V get(long timeout, TimeUnit unit) // synchronous
boolean isCancelled()

boolean isDone()
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Thread Pool Future and Task Interface

Example of Code Clarity

f(x);
g(x);
System.out.println(y + z);

int y
int z

Parallel version with asynchronous functions (£’ and g’):

Future<Integer> y = f'(x);
Future<Integer> z = g'(x);

System.out.println(y.get() + z.get());
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Thread Synchronization
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Thread Pool Future and Task Interface

Task API

A task is either:
P an action: interface Runnable defining the method void run()
» or a function: interface Callable<V> defining the method V call()
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Thread Pool Executors Interface
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Thread Pool Executors Interface

Executor

Interface Executor:

void execute(Runnable command) // asynchronous

Example:

Executor executor = anExecutor();
executor.execute(new RunnableTask());
executor.execute(() -> { processing(); });

Limitation: not possible to check task completions.
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Thread Pool Executors Interface

ExecutorService

Interface:

Future<?> submit(Runnable command) // asynchronous
Future<V> submit(Callable<V> callable) // asynchronous
List<Future<V>> invokeAll(Collection<Callable<V>> callables) // sync.

Alternative invocation methods with timeout (preferable when possible).
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Thread Pool Executors Interface

Example

int y = £(x);
int z = g(x);
System.out.println(y + z);

Future<Integer> y = executor.submit(() -> £(x));
Future<Integer> z = executor.submit(() -> g(x));
System.out.println(y.get() + z.get());
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Thread Pool Executors Interface

Executors

Convenience class to easily create an ExecutorService:

Executors.newSingleThreadExecutor () ;
Executors.newFixedThreadPool (10) ;
Executors.newCachedThreadPool () ;

Different types of thread pools:

single thread execution of a single task at a time

fixed thread the maximum number of threads is fixed (threads are not reclaimed)
cached thread expandable thread pool (suitable with many short-lived tasks)

More customized executors may be created by instantiating class ThreadPoolExecutor.
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Thread Pool Executors Interface

Pool Termination

Methods from interface ExecutorService for termination:

boolean awaitTermination(long timeout, TimeUnit unit)
void shutdown()
List<Runnable> shutdownNow ()

Effects:
awaitTermination blocks until all tasks are terminated (with timeout)
shutdown prevent the executor from accepting new tasks

shutdownNow as shutdown but cancel waiting tasks and try interrupting executing tasks
(return unfinished tasks)
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Thread Pool Executors Interface

Java: Task Interruption

» Interrupting a thread is done cooperatively.

> The method interrupt is called on a given thread.

» The task executed by this thread must regularly check if it has been interrupted with
Thread.interrupted().

> Alternatively, the task frequently calls a method that may throw InterruptedException.
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Thread Pool Executors Interface

Complete Example

List<Callable<String>> callables = Arrays.asList(
() -> "taskl",
O —> "task2",
O -> "task3d");

List<Future<String>> results =
executor.invokeAll (callables);

executor.shutdown() ;
executor.awaitTermination(1l, TimeUnit.SECONDS)

results.stream()
.map (future -> future.get(l, TimeUnit.SECONDS)).
.forEach(System.out: :println);
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Thread Pool Executors Interface

ScheduledExecutorService — part 1

To specify the execution of a task in the future (asynchronous):

Future<?> schedule(Runnable command, long delay, TimeUnit unit)
Future<V> schedule(Callable<V> callable, long delay, TimeUnit unit)
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Thread Pool Executors Interface

ScheduledExecutorService — part 2

To specify that a task must be repeated (every few time units or with a minimum delay between
each termination and start):

Future<?> scheduleAtFixedRate (Runnable command,
long initialDelay, long period, TimeUnit unit)

Future<?> scheduleWithFixedDelay(Runnable command,
long initialDelay, long delay, TimeUnit unit)

Scheduled versions of most previous methods exist for Executors. Moreover, class
ScheduledThreadPoolExecutor allows creating a customized scheduled executor.
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Thread Pool Executors Interface

Avoiding Sleeps

workl () ;
Thread.sleep(10000);
work2() ;

workl () ;

ScheduledExecutorService scheduler =
Executors.newScheduledThreadPool (1) ;

scheduler.schedule(work2, 10, TimeUnit.SECONDS);

scheduler.shutdown() ;
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Thread Pool Executors Interface

Sequence Diagram

thread thread

workil workl(mw submit

sleep! |blocked

work?2 work?2
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Thread Pool Executors Interface

Other Non-Covered Features

» daemon and non-daemon threads

> ExecutionException, RejectedExecutionException
» ThreadFactory, RejectedExecutionHandler

» ThreadLocal, ThreadGroup, ThreadInfo
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Thread Pool ForkJoinPool: a Special Thread Pool
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Thread Pool ForkJoinPool: a Special Thread Pool

A Special Executor

» Designed for tasks that can be decomposed recursively (forked and then joined):
ForkJoinTask.

P> Rely on a work-stealing algorithm: when a thread is free, it steals tasks from other threads.

> Used by parallel streams and Arrays.parallelSort().
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Thread Pool ForkJoinPool: a Special Thread Pool

ForkJoinPool

Same behavior as Executor for execute (asynchronous execution without result) and as
ExecutorService for submit (asynchronous execution with a future).
Tasks can be submitted synchronously:

T invoke(ForkJoinTask<T> task) // synchronous

A static common fork/join pool is available:

static ForkJoinPool commonPool()

Numerous possible customizations.
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Thread Pool ForkJoinPool: a Special Thread Pool

ForkJoinTask<V>

Asynchronous execution:

ForkJoinTask<V> fork() // asynchronous
V join() // synchronous

Synchronous execution:

V invoke() // synchronous

static Collection<ForkJoinTask<?>>
invokeAll(Collection<ForkJoinTask<?>> tasks) // synchronous

static void invokeAll(ForkJoinTask<?>... tasks) // synchronous

Concrete implementations of abstract class ForkJoinTask:
P> RecursiveTask<V> with one method to implement: V compute()

> RecursiveAction with one method to implement: void compute()
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Thread Pool ForkJoinPool: a Special Thread Pool

Task Division Algorithm

Divide work until it is small enough:

//
else
//
//
//
//
//

if (currentPortion() <= THRESHOLD)

do the work directly

split current work into two pieces

fork a piece (incurring additional recursive splits)

execute the other piece (incurring additional recursive splits)
wait for the result of the first piece

combine the results

Alternative for the division (with a blocking thread):

//
//
//
//

split current work into two pieces

invoke the two pieces (incurring additional recursive splits)
wait for both results

combine the results
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Thread Pool ForkJoinPool: a Special Thread Pool

Example with a RecursiveTask<V>

protected Double compute() {
if (length <= THRESHOLD)
return computeSequentially();

int half = length / 2;

RecTask leftTask = new RecTask(half);
leftTask.fork();

RecTask rightTask = new RecTask(length - half);
Double rightResult = rightTask.compute();

Double leftResult = leftTask.join();
return leftResult + rightResult;
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Thread Pool ForkJoinPool: a Special Thread Pool

Example with a RecursiveAction

protected void compute() {
if (length < THRESHOLD) {
computeSequentially();
return;

int half = length / 2;

invokeAll (new RecAction(half),
new RecAction(length - half));
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Thread Pool ForkJoinPool: a Special Thread Pool

Submission Example to ForkJoinPool

Long res = new ForkJoinPool()

.invoke (new RecTask(1_000_000));
new ForkJoinPool ()

.invoke (new RecAction(1_000_000));
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Thread Pool ForkJoinPool: a Special Thread Pool

Threshold Selection

Select threshold by testing and measuring performance:
» Too much divisions (low THRESHOLD) leads to task management overhead: fine grain.

» Not enough divisions (high THRESHOLD) leads to work imbalance among the threads (some
will finish earlier than others): coarse grain.
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Thread Pool ForkJoinPool: a Special Thread Pool

Work Imbalance
Coarse grain: Fine grain:
Cmax Cmax
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Thread Pool ForkJoinPool: a Special Thread Pool

Complete Example (Sequential Part)

public class RecPiTask extends RecursiveTask<Double> {
static long THRESHOLD = 1_000_000;
long MC;

public RecPiTask(long MC) {
this.MC = MC;
}

protected Double computeSequentially() {
Supplier<double[]> supplier = () -> new double[] {
ThreadLocalRandom. current () .nextDouble(),
ThreadLocalRandom.current () .nextDouble() };
return Stream.generate(supplier)
.limit (MC)
.filter(x -> x[0] * x[0] + x[1] * x[1] < 1)
.count() * 4. / MC;
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Thread Pool ForkJoinPool: a Special Thread Pool

Complete Example (Parallel Part)

protected Double compute() {
if (MC <= THRESHOLD)
return computeSequentially();

long half = MC / 2;

RecPiTask leftTask = new RecPiTask(half);
leftTask.fork();

RecPiTask rightTask = new RecPiTask(MC - half);
Double right = rightTask.compute();

Double left = leftTask.join();
return (half * left + (MC - half) * right) / MC;
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Thread Pool ForkJoinPool: a Special Thread Pool

Complete Example (Invocation Part)

long MC = 100_000_000;

// Sequentially

Double pil = new RecPiTask(MC)
.computeSequentially () ;

// In parallel

Double pi2 = ForkJoinPool.commonPool ()
.invoke (new RecPiTask(MC));
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Summary and References

Thread Pools

» Support for concurrency in Java has evolved and continues to evolve.
» Thread pools are generally helpful but can cause problems when many tasks are blocking.

» The fork/join framework lets you recursively split a parallelizable task into smaller tasks,
execute them on different threads, and then combine the result of each subtask in order to
produce the overall result.
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Summary and References

Official Documentation

Documentation of package concurrent
Documentation of interface ExecutorService
Documentation of class Executors
Documentation of class ForkJoinPool

Documentation of class ForkJoinTask

vVvyVvyVvyYyvyy

Java Tutorial on Executors
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https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/concurrent/package-summary.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/concurrent/ExecutorService.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/concurrent/Executors.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/concurrent/ForkJoinPool.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/concurrent/ForkJoinTask.html
https://docs.oracle.com/javase/tutorial/essential/concurrency/executors.html
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