Multicore Programming

Executors

Louis-Claude Canon
louis-claude.canon@univ-fcomte.fr

Bureau 414C

Master 1 computer science — Semester 8

Louis-Claude Canon MCP — Executors 1/58

mailto:louis-claude.canon@univ-fcomte.fr

Motivation

» Express multitask operations without writing the thread logic.

» Rely on thread pools to limit thread management overhead (since Java 5).

Louis-Claude Canon MCP — Executors 2/58

Outline

Generality
Thread Pool

Summary and References

Louis-Claude Canon

MCP — Executors

3/58

Generality Multicore Architecture

Outline

Generality
Multicore Architecture

Louis-Claude Canon MCP — Executors 4/58

Machine (31GB)

Package P#0

L3 (8192KB)

L2 (256KB) L2 (256KB) L2 (256KB) L2 (256KB)

L1d (32KB) L1d (32KB) L1d (32KB) L1d (32KB)

L1i (32KB) L1i (32KB) L1i (32KB) L1i (32KB)

Core P#0 Core P#1 Core P#2 Core P#3
PU P#0 PU P#£1 PU P#2 PU P#3
PU P#4 PU P#5 PU P#6 PU P#7

How Hyper-Threading Technology Works

WITHOUT
HT Technology

WITH
HT Technology

Physical Logical processor

Processors visible to OS

Physical processor
resource allocation

Rescurce 2 |

Resource 3 | |-

Generality Classic Threads

Outline

Generality

Classic Threads

Louis-Claude Canon MCP — Executors 7/58

Generality Classic Threads

Thread API

Interface Runnable:

void run()

Class Thread:

Thread ()

Thread (Runnable command)
static Thread currentThread()
void join() // synchronous
void run() // synchronous
static void sleep(long millis)
void start() // asynchronous

Louis-Claude Canon MCP — Executors 8/58

Generality Classic Threads

Example of Thread Creation

class ExaRun implements Runnable {
public void run() {
System.out.println("Hello");
3
}

new Thread(new ExaRun()).start();
new Thread(() -> System.out.println("Hello")).start();

From now on, we avoid new Thread() and start, except when implementing an executor.

Louis-Claude Canon MCP — Executors 9/58

Thread Creation

Louis-Claude Canon

Generality Classic Threads

main

start ()

"Hello"

MCP — Executors

10/58

Generality Problems with Threads

Outline

Generality

Problems with Threads

Louis-Claude Canon MCP — Executors 11/58

Generality Problems with Threads

Problem 1: C10k Problem

As a motivational example, a server dealing with multiple requests:
» 1 connection: easy without thread
» 10/100 connections: easy with threads, possible without
» 1k connections: technical with threads, difficult without

» 10k connections: problem with only threads, easy with Erlang (green threads)

Louis-Claude Canon MCP — Executors 12 /58

Generality Problems with Threads

Thread Costs

Maximum number of concurrent threads:
» around 1 MB for each stack for recursive calls
P> at most 10k with 10 GB of RAM

Maximum rate of thread creations:
» around 0.1 ms per creation

P costly creation and destruction

Louis-Claude Canon MCP — Executors 13 /58

Generality Problems with Threads

Problem 2: Code Clarity

Low-level thread logic is:
» hard to reason with (difficult to debug)

» heavy to write (lot of synchronizations)

Louis-Claude Canon MCP — Executors 14 /58

Generality Problems with Threads

Example of Boilerplate Thread Code

int y = £(x);
int z = g(x);
System.out.println(y + z);

Result result = new Result();

Thread t1 = new Thread(() -> { result.left = f(x); });
Thread t2 = new Thread(() -> { result.right = g(x); });
tl.start();

t2.start();

t1l.join();

t2.join();

System.out.println(result.left + result.right);

Louis-Claude Canon MCP — Executors 15 /58

Generality Problems with Threads

Thread Synchronization

main
Thread-0 | 9l Thread-1

start(

join()

blocked g(x)

_———

i f(x)

join()

Louis-Claude Canon MCP — Executors 16 /58

Thread Pool Overview

Outline

Thread Pool

Overview

Louis-Claude Canon MCP — Executors 17 /58

Thread Pool Overview

Solution

Thread pool:
P one or a few long-running threads per core with several tasks to execute sequentially
» reuse threads (limited number of threads and fewer creations)
» provide features for synchronization

P alleviate both cost and clarity problems

Louis-Claude Canon MCP — Executors 18 /58

Task Queue

- (@@ — O _,l,

W OO
Pool ‘..

Completed Tasks |
-(@@© «— O

[@li(e]

Thread Pool Overview

Preemption

» Each thread can be interrupted by the operating system for concurrency (to let others have
a time-share of a CPU core).

P> A task cannot be paused and goes back in the queue to let another task executes.

Louis-Claude Canon MCP — Executors 20/58

Thread Pool Future and Task Interface

Outline

Thread Pool

Future and Task Interface

Louis-Claude Canon MCP — Executors 21/58

Thread Pool Future and Task Interface

Future

v

Placeholder (like Optional) for a result that will be computed later.
Similar to promises.
Inspired by the conflict between RPC and message passing paradigm:

RPC Remote Procedure Call: easy to program with (close to sequential programming) but
synchronous (blocking).
Message passing Asynchronous but harder to reason about.

Futures/promises can be seen as messages to future self.

Louis-Claude Canon MCP — Executors 22 /58

Thread Pool Future and Task Interface

Future<V>

Class Future:

boolean cancel(boolean mayInterruptIfRunning)

V get() // synchronous

V get(long timeout, TimeUnit unit) // synchronous
boolean isCancelled()

boolean isDone()

Louis-Claude Canon MCP — Executors 23 /58

Thread Pool Future and Task Interface

Example of Code Clarity

f(x);
g(x);
System.out.println(y + z);

int y
int z

Parallel version with asynchronous functions (£’ and g’):

Future<Integer> y = f'(x);
Future<Integer> z = g'(x);

System.out.println(y.get() + z.get());

Louis-Claude Canon MCP — Executors 24 /58

Thread Synchronization

main

blocked

Louis-Claude Canon

_———

Thread Pool Future and Task Interface

Thread-0 Thread-1

f° (X) g) (X)

y.get O

f(x)

z.get()

g(x)

MCP — Executors

25 /58

Thread Pool Future and Task Interface

Task API

A task is either:
P an action: interface Runnable defining the method void run()
» or a function: interface Callable<V> defining the method V call()

Louis-Claude Canon MCP — Executors 26 /58

Thread Pool Executors Interface

Outline

Thread Pool

Executors Interface

Louis-Claude Canon MCP — Executors 27 /58

Thread Pool Executors Interface

Executor

Interface Executor:

void execute(Runnable command) // asynchronous

Example:

Executor executor = anExecutor();
executor.execute(new RunnableTask());
executor.execute(() -> { processing(); });

Limitation: not possible to check task completions.

Louis-Claude Canon MCP — Executors

28 /58

Thread Pool Executors Interface

ExecutorService

Interface:

Future<?> submit(Runnable command) // asynchronous
Future<V> submit(Callable<V> callable) // asynchronous
List<Future<V>> invokeAll(Collection<Callable<V>> callables) // sync.

Alternative invocation methods with timeout (preferable when possible).

Louis-Claude Canon MCP — Executors 29 /58

Thread Pool Executors Interface

Example

int y = £(x);
int z = g(x);
System.out.println(y + z);

Future<Integer> y = executor.submit(() -> £(x));
Future<Integer> z = executor.submit(() -> g(x));
System.out.println(y.get() + z.get());

Louis-Claude Canon MCP — Executors 30/58

Thread Pool Executors Interface

Executors

Convenience class to easily create an ExecutorService:

Executors.newSingleThreadExecutor () ;
Executors.newFixedThreadPool (10) ;
Executors.newCachedThreadPool () ;

Different types of thread pools:

single thread execution of a single task at a time

fixed thread the maximum number of threads is fixed (threads are not reclaimed)
cached thread expandable thread pool (suitable with many short-lived tasks)

More customized executors may be created by instantiating class ThreadPoolExecutor.

Louis-Claude Canon MCP — Executors 31/58

Thread Pool Executors Interface

Pool Termination

Methods from interface ExecutorService for termination:

boolean awaitTermination(long timeout, TimeUnit unit)
void shutdown()
List<Runnable> shutdownNow ()

Effects:
awaitTermination blocks until all tasks are terminated (with timeout)
shutdown prevent the executor from accepting new tasks

shutdownNow as shutdown but cancel waiting tasks and try interrupting executing tasks
(return unfinished tasks)

Louis-Claude Canon MCP — Executors

32/58

Thread Pool Executors Interface

Java: Task Interruption

» Interrupting a thread is done cooperatively.

> The method interrupt is called on a given thread.

» The task executed by this thread must regularly check if it has been interrupted with
Thread.interrupted().

> Alternatively, the task frequently calls a method that may throw InterruptedException.

Louis-Claude Canon MCP — Executors 33/58

Thread Pool Executors Interface

Complete Example

List<Callable<String>> callables = Arrays.asList(
() -> "taskl",
O —> "task2",
O -> "task3d");

List<Future<String>> results =
executor.invokeAll (callables);

executor.shutdown() ;
executor.awaitTermination(1l, TimeUnit.SECONDS)

results.stream()
.map (future -> future.get(l, TimeUnit.SECONDS)).
.forEach(System.out: :println);

Louis-Claude Canon MCP — Executors 34 /58

Thread Synchronization

main

Thread Pool Executors Interface

blocked

. e S

Louis-Claude Canon

|'Thread—0| |'Thread—1
. 'invokeAll()
; "taskl" "task2"
E "task3"
l get O get O l

MCP — Executors 35/58

Thread Pool Executors Interface

ScheduledExecutorService — part 1

To specify the execution of a task in the future (asynchronous):

Future<?> schedule(Runnable command, long delay, TimeUnit unit)
Future<V> schedule(Callable<V> callable, long delay, TimeUnit unit)

Louis-Claude Canon MCP — Executors 36 /58

Thread Pool Executors Interface

ScheduledExecutorService — part 2

To specify that a task must be repeated (every few time units or with a minimum delay between
each termination and start):

Future<?> scheduleAtFixedRate (Runnable command,
long initialDelay, long period, TimeUnit unit)

Future<?> scheduleWithFixedDelay(Runnable command,
long initialDelay, long delay, TimeUnit unit)

Scheduled versions of most previous methods exist for Executors. Moreover, class
ScheduledThreadPoolExecutor allows creating a customized scheduled executor.

Louis-Claude Canon MCP — Executors 37/58

Thread Pool Executors Interface

Avoiding Sleeps

workl () ;
Thread.sleep(10000);
work2() ;

workl () ;

ScheduledExecutorService scheduler =
Executors.newScheduledThreadPool (1) ;

scheduler.schedule(work2, 10, TimeUnit.SECONDS);

scheduler.shutdown() ;

Louis-Claude Canon MCP — Executors 38/58

Thread Pool Executors Interface

Sequence Diagram

thread thread

workil workl(mw submit

sleep! |blocked

work?2 work?2

Louis-Claude Canon MCP — Executors 39/58

Thread Pool Executors Interface

Other Non-Covered Features

» daemon and non-daemon threads

> ExecutionException, RejectedExecutionException
» ThreadFactory, RejectedExecutionHandler

» ThreadLocal, ThreadGroup, ThreadInfo

Louis-Claude Canon MCP — Executors 40/58

Thread Pool ForkJoinPool: a Special Thread Pool

Outline

Thread Pool

ForkJoinPool: a Special Thread Pool

Louis-Claude Canon MCP — Executors 41/58

Thread Pool ForkJoinPool: a Special Thread Pool

A Special Executor

» Designed for tasks that can be decomposed recursively (forked and then joined):
ForkJoinTask.

P> Rely on a work-stealing algorithm: when a thread is free, it steals tasks from other threads.

> Used by parallel streams and Arrays.parallelSort().

Louis-Claude Canon MCP — Executors 42 /58

Thread Pool ForkJoinPool: a Special Thread Pool

ForkJoinPool

Same behavior as Executor for execute (asynchronous execution without result) and as
ExecutorService for submit (asynchronous execution with a future).
Tasks can be submitted synchronously:

T invoke(ForkJoinTask<T> task) // synchronous

A static common fork/join pool is available:

static ForkJoinPool commonPool()

Numerous possible customizations.

Louis-Claude Canon MCP — Executors 43 /58

Fork recursively a task
in smaller subtask fork
until each subtask

is small enough

fork fork

! ! ! !

Sequential Sequential Sequential Sequential

evaluation evaluation evaluation evaluation
Evaluate all

subtasks in
parallel

NV NV

join

Recombine
the partial
results

Thread Pool ForkJoinPool: a Special Thread Pool

ForkJoinTask<V>

Asynchronous execution:

ForkJoinTask<V> fork() // asynchronous
V join() // synchronous

Synchronous execution:

V invoke() // synchronous

static Collection<ForkJoinTask<?>>
invokeAll(Collection<ForkJoinTask<?>> tasks) // synchronous

static void invokeAll(ForkJoinTask<?>... tasks) // synchronous

Concrete implementations of abstract class ForkJoinTask:
P> RecursiveTask<V> with one method to implement: V compute()

> RecursiveAction with one method to implement: void compute()

Louis-Claude Canon MCP — Executors

45 /58

Thread Pool ForkJoinPool: a Special Thread Pool

Task Division Algorithm

Divide work until it is small enough:

//
else
//
//
//
//
//

if (currentPortion() <= THRESHOLD)

do the work directly

split current work into two pieces

fork a piece (incurring additional recursive splits)

execute the other piece (incurring additional recursive splits)
wait for the result of the first piece

combine the results

Alternative for the division (with a blocking thread):

//
//
//
//

split current work into two pieces

invoke the two pieces (incurring additional recursive splits)
wait for both results

combine the results

Louis-Claude Canon MCP — Executors

46 /58

Thread Pool ForkJoinPool: a Special Thread Pool

Example with a RecursiveTask<V>

protected Double compute() {
if (length <= THRESHOLD)
return computeSequentially();

int half = length / 2;

RecTask leftTask = new RecTask(half);
leftTask.fork();

RecTask rightTask = new RecTask(length - half);
Double rightResult = rightTask.compute();

Double leftResult = leftTask.join();
return leftResult + rightResult;

Louis-Claude Canon MCP — Executors

47 /58

Thread Pool ForkJoinPool: a Special Thread Pool

Example with a RecursiveAction

protected void compute() {
if (length < THRESHOLD) {
computeSequentially();
return;

int half = length / 2;

invokeAll (new RecAction(half),
new RecAction(length - half));

Louis-Claude Canon MCP — Executors 48 /58

Thread Pool ForkJoinPool: a Special Thread Pool

Submission Example to ForkJoinPool

Long res = new ForkJoinPool()

.invoke (new RecTask(1_000_000));
new ForkJoinPool ()

.invoke (new RecAction(1_000_000));

Louis-Claude Canon MCP — Executors 49 /58

Worker 1

Worker 2

Worker 3

Worker 4

split split
L2 1
split
steal 2 1
steal
steal 1

running

running

running

running

Thread Pool ForkJoinPool: a Special Thread Pool

Threshold Selection

Select threshold by testing and measuring performance:
» Too much divisions (low THRESHOLD) leads to task management overhead: fine grain.

» Not enough divisions (high THRESHOLD) leads to work imbalance among the threads (some
will finish earlier than others): coarse grain.

Louis-Claude Canon MCP — Executors 51/58

Thread Pool ForkJoinPool: a Special Thread Pool

Work Imbalance
Coarse grain: Fine grain:
Cmax Cmax

P | L L1
P | ALT T L

} } } > time > time
0 1 2 3 0 1 2
Cmax
23 I
P [
} — time

Louis-Claude Canon MCP — Executors 52/58

Thread Pool ForkJoinPool: a Special Thread Pool

Complete Example (Sequential Part)

public class RecPiTask extends RecursiveTask<Double> {
static long THRESHOLD = 1_000_000;
long MC;

public RecPiTask(long MC) {
this.MC = MC;
}

protected Double computeSequentially() {
Supplier<double[]> supplier = () -> new double[] {
ThreadLocalRandom. current () .nextDouble(),
ThreadLocalRandom.current () .nextDouble() };
return Stream.generate(supplier)
.limit (MC)
.filter(x -> x[0] * x[0] + x[1] * x[1] < 1)
.count() * 4. / MC;

Louis-Claude Canon MCP — Executors

53 /58

Thread Pool ForkJoinPool: a Special Thread Pool

Complete Example (Parallel Part)

protected Double compute() {
if (MC <= THRESHOLD)
return computeSequentially();

long half = MC / 2;

RecPiTask leftTask = new RecPiTask(half);
leftTask.fork();

RecPiTask rightTask = new RecPiTask(MC - half);
Double right = rightTask.compute();

Double left = leftTask.join();
return (half * left + (MC - half) * right) / MC;

Louis-Claude Canon MCP — Executors

54 /58

Thread Pool ForkJoinPool: a Special Thread Pool

Complete Example (Invocation Part)

long MC = 100_000_000;

// Sequentially

Double pil = new RecPiTask(MC)
.computeSequentially () ;

// In parallel

Double pi2 = ForkJoinPool.commonPool ()
.invoke (new RecPiTask(MC));

Louis-Claude Canon MCP — Executors 55 /58

Summary and References

Outline

Summary and References

Louis-Claude Canon MCP — Executors 56 /58

Summary and References

Thread Pools

» Support for concurrency in Java has evolved and continues to evolve.
» Thread pools are generally helpful but can cause problems when many tasks are blocking.

» The fork/join framework lets you recursively split a parallelizable task into smaller tasks,
execute them on different threads, and then combine the result of each subtask in order to
produce the overall result.

Louis-Claude Canon MCP — Executors 57 /58

Summary and References

Official Documentation

Documentation of package concurrent
Documentation of interface ExecutorService
Documentation of class Executors
Documentation of class ForkJoinPool

Documentation of class ForkJoinTask

vVvyVvyVvyYyvyy

Java Tutorial on Executors

Louis-Claude Canon MCP — Executors 58 /58

https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/concurrent/package-summary.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/concurrent/ExecutorService.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/concurrent/Executors.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/concurrent/ForkJoinPool.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/concurrent/ForkJoinTask.html
https://docs.oracle.com/javase/tutorial/essential/concurrency/executors.html

	Generality
	Multicore Architecture
	Classic Threads
	Problems with Threads

	Thread Pool
	Overview
	Future and Task Interface
	Executors Interface
	ForkJoinPool: a Special Thread Pool

	Summary and References

