Learning objective: find classical optimal scheduling rules and extreme instances when no information about tasks is known until they arrive.

All the exercises are essential.

Before starting, we introduce some definitions for scheduling using Graham’s notation:

- pmtn in the β part corresponds to preemption, which allows task executions to be paused;
- \(r_j \) in the β part represents release times;
- online in the β part (which implies \(r_j \)) means that no information is known at execution before tasks are released;
- \(L_{\text{max}} \) in the γ part (which implies \(d_j \)) is the lateness objective: \(\max(c_j - d_j, 0) \) where \(c_j \) is the completion time of task \(j \) and \(d_j \) is its deadline;
- \(\sum f_j \) in the γ part where \(f_j = c_j - r_j \) is the flowtime, the time spent by task \(j \) in the system.

For instance, the following instance for the problem

\[
1 \mid r_j, \text{pmtn, online} \mid L_{\text{max}}
\]

contains release times, processing costs and deadlines: \(\{r_j\} = \{0, 2, 3\}, \{p_j\} = \{3, 2, 1\} \) and \(\{d_j\} = \{6, 5, 4\} \). A possible solution consists in executing task 1 from 0 to 2, then task 2 until 4, then 1 again until 5 and finally 3 until 6. The maximum lateness in this case is \(L_{\text{max}} = 2 \).

Exercise 1: 1\mid r_j, pmtn, online\mid L_{\text{max}}

Find the optimal schedule for the following instance: \(\{r_j\} = \{0, 2, 3\}, \{p_j\} = \{3, 2, 1\} \) and \(\{d_j\} = \{6, 5, 4\} \).

Propose different algorithms to solve the problem and compare their solutions.

Hint: at each step, there is a set of available tasks with different total processing times, release times, due dates and remaining processing times.

We can select the Earliest Deadline First (EDF) rule, which uses the due dates and is optimal in this case. This rule is often used in real-time systems.

Other rules includes:

- **LPT** Longest Processing Time first (which uses the processing times);
- **SRPT** Shortest Remaining Processing Time first (which uses the remaining processing times);
- **FIFO** First In First Out (which uses the release times).

Other rules could be designed by combining the information of each task (e.g. difference between due dates and release times).
Exercise 2: $1 | r_j, pmtn, online | \sum f_j$

Compare the previous algorithms on the previous instance but for this problem.

Determine which strategy is the best with this objective.

The Shortest Remaining Processing Time (SRPT) is optimal in this case.

Exercise 3: $1 | r_j, pmtn, online | \sum f_j/p_j$

The flowtime is normalized by the task processing cost (also the stretch) to give more importance to small tasks. For this problem, SRPT is 2-competitive. This means that the objective value is at most twice the optimal value that can be achieved a posteriori. Find an instance for which SRPT is not optimal.

Hint: since SRPT is optimal for the flowtime but no the stretch (a measure that gives more importance to short tasks), it probably favors long tasks. It should be possible to find an instance where SRPT continues a long task delaying an upcoming short task whereas it would be better to do the opposite.

With $\{r_j\} = \{0, 2\}$ and $\{p_j\} = \{3, 2\}$, SRPT achieves 2.5 whereas the small task is started as soon as possible in the optimal solution (2.33).

Exercise 4: $P | r_j, pmtn, online | \sum f_j$

For this problem, SRPT is $\max(p_{\text{max}}/p_{\text{min}}, n/m)$-competitive. Find an instance for which SRPT is not optimal.

With $\{r_j\} = \{0, 0, 0, 4, 4\}$, $\{p_j\} = \{2, 2, 4, 1, 1\}$ and $m = 2$, SRPT achieves 14 whereas starting the longest task first leads to 12.