
TD Algo2 – session 4 – Extension de structure de données

20 janvier 2026

Objectifs d’apprentissage :
— concevoir des algorithmes relatifs aux arbres de rangs ;
— concevoir des algorithmes relatifs aux arbres d’intervalles
— mettre en pratique la technique d’extension de structure de données.

Les 3 premiers exercices sont essentiels.
La méthode pour la conception d’algorithmes est la suivante :
1. comprendre l’énoncé ;
2. faire un exemple non trivial pour résoudre à la main ;
3. en l’absence d’idée d’algorithme, recommencer avec un exemple plus grand ;
4. identifier les étapes de l’algorithme trouvé ;
5. convertir en pseudo-code.

Exercice 1 : Rechercher-Rang-Clé
On considère un arbre de rangs T . Écrire une procédure récursive Rechercher-Rang-Clé(x, k)
qui prend en entrée un nœud x et une clé k, et qui retourne le rang de k dans le sous-arbre de rangs
enraciné en x. On supposera que les clés de T sont distinctes et que la clé k est présente dans le
sous-arbre enraciné en x.

Rechercher-Rang-Clé(x, k)
r ← x.gauche.taille + 1
si x.clé = k alors

retourner r
sinon si k < x.clé alors

retourner Rechercher-Rang-Clé(x.gauche, k)
sinon

retourner r + Rechercher-Rang-Clé(x.droite, k)

Exercice 2 : Successeur
Étant donné un élément x dans un arbre de rangs à n nœuds, et un entier naturel i, comment peut-on
déterminer le i-ème successeur de x (c’est-à-dire le nœud dont le rang est celui de x plus i) dans
l’arbre avec un temps O(log n) ? On suppose que l’élément recherché est dans l’arbre.

Successeur-Rang(T, x, i)
r ← Déterminer-Rang(T, x)
retourner Récupérer-Rang(T.racine, r + i)

Exercice 3 : Extrémité minimale
Décrire un algorithme efficace qui, étant donné un intervalle i, retourne l’intervalle recoupant i dont
le début est le plus petit possible, ou qui retourne T.nil si un tel intervalle n’existe pas.

1



Rechercher-Intervalle-Minimal(T, i)
x← T.racine
y ← T.nil
tant que x ̸= T.nil faire

si i recoupe x.int faire
y ← x

si x.gauche ̸= T.nil et i.début ≤ x.gauche.max alors
x← x.gauche

sinon
x← x.droite

retourner y

Exercice 4 : Temps constant
Montrer comment mettre en œuvre les requêtes Minimum, Maximum, Successeur et Prédécesseur
en temps Θ(1) dans le cas le plus défavorable. Les performances asymptotiques des autres opérations
sur les arbres ne devront pas être affectées. (Conseil : ajouter des pointeurs aux nœuds.)

1. Choix de la structure de données sous-jacente : arbre rouge-noir avec la clé classique.
2. Informations supplémentaires : on ajoute deux champs pred et succ sur chaque nœud, et

deux champs min et max sur la racine. Ces champs ajoutés forment une liste doublement
chaînée sur tous les nœuds.

3. Compatibilité avec l’insertion. À chaque insertion, on appelle l’opération Successeur sur
le nœud inséré dans l’arbre en O(log n), puis on insère le nœud dans la liste chaînée en
Θ(1). Si le successeur est T.nil, on met à jour T.max et si le successeur est T.min, on met
à jour T.min. Comme l’insertion est en temps O(log n), sa complexité n’est pas affectée.

4. Nouvelles opérations : les champs ajoutés permettent les requêtes recherchées en Θ(1).

Exercice 5 : Champ rang
Observons que, chaque fois que le champ taille est utilisé dans Récupérer-Rang ou Déterminer-
Rang, il ne sert qu’à calculer le rang du nœud dans le sous-arbre issu de ce nœud. Supposons donc
que l’on décide de stocker dans chaque nœud son rang dans le sous-arbre dont il est la racine. Montrer
comment gérer cette donnée lors de l’insertion. (Ne pas oublier que cette opération peut provoquer
des rotations).

On met à jour le rang de tous les ancêtres dont la clé est supérieure.
RN-Insérer(T, z)
. . .
y ← z
tant que y.parent ̸= T.nil faire

si y = y.parent.gauche alors
y.parent.rang ← y.parent.rang + 1

y ← y.parent
RN-Insérer-Correction(T, z)

Il faut déterminer combien de prédécesseurs apparaissent dans les rotations. Pour la rotation
gauche, y aura comme prédécesseurs supplémentaires : x et α.

Rotation-Gauche(T, x)
. . .
y.rang ← y.rang + x.rang

2



Exercice 6 : Rotation gauche
Écrire un pseudo code pour Rotation-Gauche agissant sur les nœuds d’un arbre d’intervalles et
capable de mettre à jour les champs max en Θ(1).

Rotation-Gauche(T, x)
. . .
x.max← max(x.int.fin, x.gauche.max, x.droite.max)
y.max← max(x.max, y.max)

Exercice 7 : Récupérer-rang
Écrire une version non récursive de Récupérer-Rang.

Récupérer-Rang(T, i)
x← T.racine
tant que x ̸= T.nil faire

r ← x.gauche.taille + 1
si i = r alors

retourner x
sinon si i < r alors

x← x.gauche
sinon

x← x.droite
i← i− r

retourner x

Exercice 8 : Tous les intervalles
Étant donné un arbre d’intervalles T et un intervalle i, décrire comment tous les intervalles de T
recoupant i peuvent être recensés en O(min(n, k log n)), où k est le nombre d’intervalles présents
dans la liste de sortie. Trouver une solution qui ne modifie pas l’arbre.

Rechercher-Tous-Intervalles(x, i)
y ← ∅
si x recoupe x.int faire

y ← {x}
si x.gauche ̸= T.nil et i.début ≤ x.gauche.max alors

y ← y ∪Rechercher-Tous-Intervalles(x.gauche, i)
si x.droite ̸= T.nil et x.clé ≤ i.fin alors

y ← y ∪Rechercher-Tous-Intervalles(x.droite, i)
retourner y

Exercice 9 : Rechercher-Intervalle-Exact
Suggérer des modifications aux procédures d’arbre d’intervalles permettant de supporter l’opération
Rechercher-Intervalle-Exact(T, i), qui retourne un pointeur sur un nœud x de l’arbre d’inter-
valles T tel que x.int.début = i.début et i.int.fin = i.fin, ou qui retourne T.nil si T ne contient pas
un tel nœud. Toutes les opérations, y compris Rechercher-Intervalle-Exact, devront s’exécuter
dans un temps en O(log n) sur un arbre à n nœuds.

On suppose que la clé selon laquelle les éléments s’insère dans l’arbre n’est plus simplement
x.int.début, mais (x.int.début, x.int.fin). C’est-à-dire que les nœuds sont triés suivant l’ordre
lexicographique sur les extrémités des intervalles.

3



Rechercher-Intervalle-Exact(T, i)
x← T.racine
tant que x ̸= T.nil et (i.début ̸= x.int.début ou i.fi ̸= x.int.fin) faire

si i.début < x.int.début ou (i.début = x.int.début et i.fin < x.int.fin) alors
x← x.gauche

sinon
x← x.droite

retourner x

Exercice 10 : Hauteurs noires
On souhaite gérer les hauteurs noires des nœuds d’un arbre rouge-noir en tant que champs des nœuds
de l’arbre sans que les performances asymptotiques des opérations d’arbre rouge-noir soient affectées.
Comment procéder ?

— Choix de la structure de données sous-jacente : arbre rouge-noir.
— Information supplémentaire : le champs hauteur, avec T.nil.hauteur = 0.
— Compatibilité avec l’insertion. On ne modifie le champ que lorsque les couleurs d’un nœud

changent :
— Cas 1 : le grand-parent distribue sa noirceur à ses enfants, donc son champ hauteur

est incrémenté.
— Cas 3 : les couleurs sont échangées lors de la rotation et on échange aussi les valeurs

des champs hauteur.
— La racine qui était devenue rouge est remise à noire : on incrémente son champs

hauteur.
— Nouvelle opération : Hauteur-noire récupère le champ hauteur de n’importe quel nœud

en Θ(1).

Exercice 11 : Profondeur
Peut-on utiliser un champ supplémentaire dans les nœuds d’un arbre rouge-noir pour gérer efficacement
la profondeur des nœuds. Dire pourquoi.

On ne peut pas conserver la complexité O(log n) car lors d’une rotation sur la racine suite à une
insertion, la moitié des nœuds peut changer de profondeur et il faut donc mettre à jour O(n)
profondeurs, ce qui est inefficace.

Exercice 12 : Distance-Min
Montrer comment gérer un ensemble dynamique Q de nombres pouvant supporter l’opération
Distance-Min, qui donne la longueur de la différence entre les deux nombres les plus proches dans
Q. Par exemple, si Q = {1, 5, 9, 15, 18, 22}, alors Distance-Min(Q) retourne 18− 15 = 3, puisque
15 et 18 sont les nombres les plus proches dans Q. Rendre les opérations Insérer, Supprimer,
Rechercher et Distance-Min les plus efficaces possibles, et analyser leur temps d’exécution.

— Choix de la structure de données sous-jacente : arbre rouge-noir dont les clés sont les
nombres.

— Informations supplémentaires : on ajoute les champs x.distmin, x.min et x.max qui
représente respectivement la distance minimale entre chaque paire de nombres, le minimum
et le maximum pour le sous-arbre enracinée en x. Les valeurs pour T.nil sont −∞ pour
les 2 premiers et ∞ pour le dernier.

— Compatibilité avec l’insertion : quand on insère un élément, on met à jour les nouveaux
champs des nœuds sur le chemin du nœud inséré à la racine. Les champs se calculent
ainsi :

4



— x.distmin ← min(x.clé − x.gauche.min, x.droite.max − x.clé, x.gauche.distmin,
x.droite.distmin) ;

— x.min← min(x.clé, x.gauche.min, x.droite.min) ;
— x.max← max(x.clé, x.gauche.max, x.droite.max).
Ce parcours se fait en temps O(log n). Pour chaque rotation, on réalise à nouveau ces
calculs pour x et y, donc en temps Θ(1).

— Nouvelle opération : Distance-Min récupère le champ distmin de la racine en Θ(1).

Exercice 13 : Rang
On souhaite un algorithme qui calcule le rang d’une valeur, c’est-à-dire, le nombre de nœuds dont les
valeurs sont inférieures ou égales à celle qui est donnée à l’algorithme. Comment faudrait-il procéder
pour avoir un algorithme en O(h) ? Proposer en pseudo-code cet algorithme.

Pour que la méthode soit en O(h), il faut rajouter un champ à chaque nœud et le mettre à jour
à chaque insertion ou suppression : la taille du sous-arbre.

Rang(T, v)
rang ← 0
x← T.racine
tant que x ̸= NIL faire

si x.clé ≤ v alors
rang ← rang + 1
si x.gauche ̸= NIL alors

rang ← rang + x.gauche.taille
x← x.droite

sinon
x← x.gauche

retourner rang

5


