TD Algo2 — session 4 — Extension de structure de données

20 janvier 2026

Objectifs d’apprentissage :

— concevoir des algorithmes relatifs aux arbres de rangs;

— concevoir des algorithmes relatifs aux arbres d’intervalles

— mettre en pratique la technique d’extension de structure de données.

Les 3 premiers exercices sont essentiels.
La méthode pour la conception d’algorithmes est la suivante :

1. comprendre I’énoncé;
faire un exemple non trivial pour résoudre a la main
en l'absence d’idée d’algorithme, recommencer avec un exemple plus grand ;

identifier les étapes de I’algorithme trouvé;

Rl B

convertir en pseudo-code.

Exercice 1 : Rechercher-Rang-Clé
On considére un arbre de rangs 7. Ecrire une procédure récursive RECHERCHER-RANG-CLE(z, k)
qui prend en entrée un noeud x et une clé k, et qui retourne le rang de k£ dans le sous-arbre de rangs
enraciné en x. On supposera que les clés de T sont distinctes et que la clé k est présente dans le
sous-arbre enraciné en .

RECHERCHER-RANG-CLE(z, k)

r < x.gauche.taille + 1
si xz.clé = k alors
retourner r
sinon si k < x.clé alors
retourner RECHERCHER-RANG-CLE(z.gauche, k)
sinon
retourner r + RECHERCHER- RANG-CLE(z.droite, k)

Exercice 2 : Successeur
Etant donné un élément z dans un arbre de rangs & n neeuds, et un entier naturel 4, comment peut-on
déterminer le i-éme successeur de x (c’est-a-dire le nceud dont le rang est celui de z plus i) dans
larbre avec un temps O(logn)? On suppose que 1’élément recherché est dans I’arbre.

SUCCESSEUR-RANG(T, z, ©)

r < DETERMINER-RANG(T, z)
retourner RECUPERER-RANG(T.racine, r + 1)

Exercice 3 : Extrémité minimale
Décrire un algorithme efficace qui, étant donné un intervalle 7, retourne l'intervalle recoupant ¢ dont
le début est le plus petit possible, ou qui retourne T.nil si un tel intervalle n’existe pas.



RECHERCHER-INTERVALLE-MINIMAL(T, ¢)

z < T.racine
y < T.nil
tant que = # T.nil faire
si ¢ recoupe z.int faire
Yy
si x.gauche # T.nil et i.début < x.gauche.mazx alors
T < z.gauche
sinon
T < z.droite
retourner y

Exercice 4 : Temps constant
Montrer comment mettre en ceuvre les requétes MINIMUM, MAXIMUM, SUCCESSEUR et PREDECESSEUR

en temps O(1) dans le cas le plus défavorable. Les performances asymptotiques des autres opérations
sur les arbres ne devront pas étre affectées. (Conseil : ajouter des pointeurs aux noeuds.)

1. Choix de la structure de données sous-jacente : arbre rouge-noir avec la clé classique.

2. Informations supplémentaires : on ajoute deux champs pred et succ sur chaque noeud, et
deux champs min et max sur la racine. Ces champs ajoutés forment une liste doublement
chainée sur tous les noeuds.

3. Compatibilité avec linsertion. A chaque insertion, on appelle Uopération SUCCESSEUR sur
le nceud inséré dans Parbre en O(logn), puis on insére le nceud dans la liste chainée en
©O(1). Si le successeur est T.nil, on met a jour T.max et si le successeur est T.min, on met
a jour T.min. Comme 'insertion est en temps O(logn), sa complexité n’est pas affectée.

4. Nouvelles opérations : les champs ajoutés permettent les requétes recherchées en O(1).

Exercice 5 : Champ rang
Observons que, chaque fois que le champ taille est utilisé dans RECUPERER-RANG ou DETERMINER-
RANG, il ne sert qu’a calculer le rang du nceud dans le sous-arbre issu de ce noeud. Supposons donc
que 'on décide de stocker dans chaque nceud son rang dans le sous-arbre dont il est la racine. Montrer
comment gérer cette donnée lors de I'insertion. (Ne pas oublier que cette opération peut provoquer
des rotations).

On met a jour le rang de tous les ancétres dont la clé est supérieure.

RN-INSERER(T, )

Yz
tant que y.parent # T.nil faire
si y = y.parent.gauche alors
y.parent.rang < y.parent.rang + 1
Y < y.parent
RN-INSERER-CORRECTION(T, 2)
Il faut déterminer combien de prédécesseurs apparaissent dans les rotations. Pour la rotation
gauche, y aura comme prédécesseurs supplémentaires : x et .

ROTATION-GAUCHE(T, z)

y.rang < y.rang + x.rang




Exercice 6 : Rotation gauche
Ecrire un pseudo code pour ROTATION-GAUCHE agissant sur les nceuds d’un arbre d’intervalles et
capable de mettre & jour les champs maz en O(1).

ROTATION-GAUCHE(T, z)

x.max + max(z.int. fin, z.gauche.max, x.droite.max)
y.max < max(x.mazx,y.max)

Exercice 7 : Récupérer-rang
Ecrire une version non récursive de RECUPERER-RANG.

RECUPERER-RANG(T, i)

x + T.racine
tant que = # T.nil faire
r < x.gauche.taille + 1
si i = r alors
retourner x
sinon si ¢ < r alors
x < x.gauche

sinon
T < x.droite
141 —7

retourner

Exercice 8 : Tous les intervalles
Etant donné un arbre d’intervalles T et un intervalle i, décrire comment tous les intervalles de T
recoupant i peuvent étre recensés en O(min(n, klogn)), ou k est le nombre d’intervalles présents
dans la liste de sortie. Trouver une solution qui ne modifie pas ’arbre.

RECHERCHER-TOUS-INTERVALLES(z, 1)

y 0
si x recoupe x.int faire

y < {z}
si x.gauche # T.nil et i.début < x.gauche.maz alors

y < y U RECHERCHER-TOUS-INTERVALLES(x.gauche, 1)
si z.droite # T.nil et x.clé < i.fin alors

y < y U RECHERCHER-TOUS-INTERVALLES(x.droite, i)
retourner y

Exercice 9 : Rechercher-Intervalle-Exact
Suggérer des modifications aux procédures d’arbre d’intervalles permettant de supporter 1’opération
RECHERCHER-INTERVALLE-EXACT(T), ¢), qui retourne un pointeur sur un nceud x de 'arbre d’inter-
valles T tel que x.int.début = i.début et i.int.fin = i.fin, ou qui retourne T'.nil si T ne contient pas
un tel noeud. Toutes les opérations, y compris RECHERCHER-INTERVALLE-EXACT, devront s’exécuter
dans un temps en O(logn) sur un arbre a n noeuds.

On suppose que la clé selon laquelle les éléments s’insére dans ’arbre n’est plus simplement
x.ant.début, mais (x.int.début, z.int. fin). C’est-a-dire que les nceuds sont triés suivant ’ordre
lexicographique sur les extrémités des intervalles.




RECHERCHER-INTERVALLE-EXACT(T, %)

z < T.racine
tant que z # T.nil et (i.début # x.int.début ou i.fi # x.int.fin) faire
si i.début < x.int.début ou (i.début = z.int.début et i.fin < x.int.fin) alors
T < x.gauche
sinon
T < x.droite
retourner

Exercice 10 : Hauteurs noires
On souhaite gérer les hauteurs noires des noeuds d’un arbre rouge-noir en tant que champs des noeuds
de I'arbre sans que les performances asymptotiques des opérations d’arbre rouge-noir soient affectées.
Comment procéder ?

— Choix de la structure de données sous-jacente : arbre rouge-noir.
— Information supplémentaire : le champs hauteur, avec T.nil.hauteur = 0.
— Compatibilité avec I'insertion. On ne modifie le champ que lorsque les couleurs d’un noeud
changent :
— Cas 1 : le grand-parent distribue sa noirceur a ses enfants, donc son champ hauteur
est incrémenté.
— Cas 3 : les couleurs sont échangées lors de la rotation et on échange aussi les valeurs
des champs hauteur.
— La racine qui était devenue rouge est remise a noire : on incrémente son champs
hauteur.
— Nouvelle opération : HAUTEUR-NOIRE récupere le champ hauteur de n’importe quel nceud

en O(1).

Exercice 11 : Profondeur
Peut-on utiliser un champ supplémentaire dans les nceuds d’un arbre rouge-noir pour gérer efficacement
la profondeur des nceuds. Dire pourquoi.

On ne peut pas conserver la complexité O(logn) car lors d’une rotation sur la racine suite a4 une
insertion, la moitié des noeuds peut changer de profondeur et il faut donc mettre a jour O(n)
profondeurs, ce qui est inefficace.

Exercice 12 : Distance-Min
Montrer comment gérer un ensemble dynamique ) de nombres pouvant supporter 1’opération
Di1STANCE-MIN, qui donne la longueur de la différence entre les deux nombres les plus proches dans
Q. Par exemple, si Q = {1,5,9,15,18,22}, alors DISTANCE-MIN(Q) retourne 18 — 15 = 3, puisque
15 et 18 sont les nombres les plus proches dans Q. Rendre les opérations INSERER, SUPPRIMER,
RECHERCHER et DISTANCE-MIN les plus efficaces possibles, et analyser leur temps d’exécution.

— Choix de la structure de données sous-jacente : arbre rouge-noir dont les clés sont les
nombres.

— Informations supplémentaires : on ajoute les champs x.distmin, x.min et r.max qui
représente respectivement la distance minimale entre chaque paire de nombres, le minimum
et le maximum pour le sous-arbre enracinée en x. Les valeurs pour T.nil sont —oo pour
les 2 premiers et co pour le dernier.

— Compatibilité avec I'insertion : quand on insére un élément, on met a jour les nouveaux
champs des nceuds sur le chemin du nceud inséré a la racine. Les champs se calculent
ainsi :




— z.distmin < min(z.clé — zx.gauche.min,z.droite.max — x.clé, z.gauche.distmin,
x.droite.distmin) ;
— z.min + min(x.clé, z.gauche.min, x.droite.min) ;
— x.max + max(z.clé, x.gauche.max, x.droite.max).
Ce parcours se fait en temps O(logn). Pour chaque rotation, on réalise & nouveau ces
calculs pour z et y, donc en temps O(1).
— Nouvelle opération : DISTANCE-MIN récupére le champ distmin de la racine en O(1).

Exercice 13 : Rang
On souhaite un algorithme qui calcule le rang d’une valeur, c’est-a-dire, le nombre de noeuds dont les
valeurs sont inférieures ou égales a celle qui est donnée a l’algorithme. Comment faudrait-il procéder
pour avoir un algorithme en O(h) ? Proposer en pseudo-code cet algorithme.

Pour que la méthode soit en O(h), il faut rajouter un champ & chaque nceud et le mettre a jour
a chaque insertion ou suppression : la taille du sous-arbre.

RANG(T,v)

rang < 0
z < T.racine
tant que = # NIL faire
si x.clé < v alors
rang < rang + 1
si x.gauche # NIL alors
rang < rang + x.gauche.taille
T < z.droite
sinon
T < z.gauche
retourner rang




