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Couverture de sommets pondérée

Problème de la couverture de sommets de poids minimal

▶ Un graphe non-orienté G = (V , E ) avec une
pondération sur les sommets w : V → N.

▶ Le poids d’une couverture de sommets C est
w(C) =

∑
v∈C w(v).

▶ Le problème de la couverture de sommets de poids
minimal consiste à trouver une couverture de
sommets dont le poids est minimal.

▶ Ce problème généralise le problème sans pondération.
Quelle pondération permet d’obtenir ce problème
plus simple ?
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Couverture de sommets pondérée

Formulation en programme entier

▶ La décision se porte sur chaque sommet que l’on conserve ou non.
▶ On définit donc une variable binaire par sommet : si elle vaut 1, on conserve le sommet

associé dans la couverture, sinon elle vaut 0 et on ne le conserve pas.
▶ On obtient alors un programme entier (ou programme linéaire en nombre entier) dont la

résolution est NP-difficile.

minimiser
∑
v∈V

w(v)x(v)

sous les contraintes x(u) + x(v) ≥ 1 pour chaque (u, v) ∈ E
x(v) ∈ {0, 1} pour chaque v ∈ V
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Couverture de sommets pondérée

Relaxation d’un programme entier
▶ Pour permettre la résolution en temps polynomial, on transforme chaque variable binaire en

une variable continue contrainte dans l’intervalle [0; 1].
▶ Cette formulation est appelé le programme linéaire relaxé (ou sa relaxation) car les

contraintes sont plus relâchées.
▶ Sa valeur de l’objectif optimale est donc au moins aussi bonne (c’est une borne inférieure

de la valeur de l’objectif optimale).

minimiser
∑
v∈V

w(v)x(v)

sous les contraintes x(u) + x(v) ≥ 1 pour chaque (u, v) ∈ E
x(v) ≤ 1 pour chaque v ∈ V
x(v) ≥ 0 pour chaque v ∈ V

Louis-Claude Canon Optimisation – Algorithmes d’approximation par relaxation de programme linéaire 6 / 43



Couverture de sommets pondérée

Question
Quelle contrainte est redondante dans cette formulation relaxée ?

minimiser
∑
v∈V

w(v)x(v)

sous les contraintes x(u) + x(v) ≥ 1 pour chaque (u, v) ∈ E
x(v) ≤ 1 pour chaque v ∈ V
x(v) ≥ 0 pour chaque v ∈ V

1. Aucune.
2. La première.

3. La seconde.
4. La troisième.
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Couverture de sommets pondérée

Question
Comment prouver que la seconde contrainte est redondante ?

minimiser
∑
v∈V

w(v)x(v)

sous les contraintes x(u) + x(v) ≥ 1 pour chaque (u, v) ∈ E
x(v) ≤ 1 pour chaque v ∈ V
x(v) ≥ 0 pour chaque v ∈ V

1. Avec une technique de preuve trop
avancée.

2. Par récurrence sur les sommets.

3. Par un argument d’échange.

4. Par l’absurde.
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sous les contraintes x(u) + x(v) ≥ 1 pour chaque (u, v) ∈ E
x(v) ≤ 1 pour chaque v ∈ V
x(v) ≥ 0 pour chaque v ∈ V

1. Avec une technique de preuve trop
avancée.

2. Par récurrence sur les sommets. ✓

3. Par un argument d’échange.
4. Par l’absurde. ✓(une solution optimale

avec x(v) > 1 peut être améliorée)
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Couverture de sommets pondérée

Couverture-Sommet-Pondéré-Approchée

On va arrondir les variables de la solution du programme linéaire relaxé pour construire une
couverture :

Couverture-Sommet-Pondéré-Approchée(G , w)

C ← ∅
calculer x̄ , solution optimale du programme linéaire relaxé
pour tout v ∈ V faire

si x̄(v) ≥ 1/2 alors
C ← C ∪ {v}

retourner C
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Couverture de sommets pondérée

Résultat formel

Théorème
Couverture-Sommet-Pondéré-Approchée est un algorithme d’approximation 2 à temps
polynomial pour le problème de la couverture de sommets de poids minimal.
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Couverture de sommets pondérée

Preuve de la complexité en temps

Démonstration.
▶ Le nombre de variables est un polynôme de la taille de l’entrée (|V |).
▶ Idem pour le nombre de contraintes (|V |+ |E |).
▶ La résolution du programme linéaire relaxé peut donc se faire en temps polynomial.
▶ La procédure d’arrondissement consiste en |V | itérations.
▶ Couverture-Sommet-Pondéré-Approchée est bien un algorithme à temps

polynomial.
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Couverture de sommets pondérée

Preuve de la validité

Démonstration.
▶ Pour chaque arête (u, v) ∈ E , x(u) + x(v) ≥ 1.
▶ x(u) ou x(v) vaut au moins 1/2 et est sélectionné dans la couverture.
▶ Chaque arête sera donc couverte.
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Couverture de sommets pondérée

Preuve du facteur d’approximation
Démonstration.
▶ Soit C∗ la couverture optimale.
▶ Soit z∗ la valeur de l’objectif optimale du programme linéaire relaxé : z∗ ≤ w(C∗) (c’est

une borne inférieure de la valeur de l’objectif optimale).
▶ On va prouver que w(C) ≤ 2z∗ (et on aura donc w(C) ≤ 2w(C∗)) :

z∗ =
∑
v∈V

w(v)x̄(v) ≥
∑
v∈C

w(v)x̄(v)

▶ Comme chaque sommet v est conservé si x̄(v) ≥ 1/2 :

z∗ ≥ 1
2

∑
v∈C

w(v) = 1
2w(C)
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Couverture de sommets pondérée

Optimalité du facteur d’approximation

Le facteur d’approximation 2 est-il optimal ?

Deux sommets de poids unitaire et une arête. On pourrait avoir x̄(v1) = x̄(v2) = 1/2. On aurait
alors une couverture de poids 2.
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Triangles d’un graphe

Problème des triangles d’un graphe

▶ Un graphe non-orienté G = (V , E ).
▶ Trois sommets u, v , w forment un triangle si les arêtes (u, v), (v , w) et (w , u) sont dans E .
▶ On souhaite déterminer un sous-ensemble S ⊆ V de sommets, tel quel le graphe G \ S ne

contient aucun triangle.
▶ Le problème consiste à trouver un sous-ensemble S de taille minimale.
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Triangles d’un graphe

Solutions gloutonnes

Quel principe glouton pourrait être mis en place ?

Triangle-Graphe-Glouton1(G)

S ← ∅
V ′ ← G .V
tant que il reste un triangle (u, v , w)

dans V ′ faire
V ′ ← V ′ \ {u}
S ← S ∪ {u}

retourner S

Triangle-Graphe-Glouton2(G)

S ← ∅
V ′ ← G .V
tant que il reste un triangle (u, v , w)

dans V ′ faire
V ′ ← V ′ \ {u, v , w}
S ← S ∪ {u, v , w}

retourner S
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Triangles d’un graphe

Pire cas pour les solutions gloutonnes

Quelle stratégie est la meilleure ?

▶ Bien que Triangle-Graphe-Glouton1 semble plus parcimonieux, son pire cas est
(|V | − 1)/2 : (|V | − 1)/2 triangles qui partagent tous un sommet central.

▶ Triangle-Graphe-Glouton2 atteint le facteur d’approximation 3 avec un graphe
composé seulement d’un triangle.
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Triangles d’un graphe

Formulation en programme entier : variables de décision

Quelles sont les variables de décision ?

▶ xv ∈ {0, 1} pour tout v ∈ V .
▶ Si xv = 1, le sommet v fait parti de la solution S.
▶ Sinon, le sommet v n’en fait pas parti.
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Triangles d’un graphe

Formulation en programme entier : fonction objectif

Quelle est la fonction objectif ?

On souhaite minimiser le nombre de sommets retournés :∑
v∈V

xv
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Triangles d’un graphe

Formulation en programme entier : contraintes

Quelles sont les contraintes ?

On souhaite sélectionner au moins un sommet pour chaque triangle : xu + xv + xw ≥ 1 si
(u, v) ∈ E , (v , w) ∈ E et (w , u) ∈ E .
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Triangles d’un graphe

Formulation en programme entier : final

minimiser
∑
v∈V

x(v)

sous les contraintes x(u) + x(v) + x(w) ≥ 1 si (u, v) ∈ E et (v , w) ∈ E et (w , u) ∈ E
x(v) ∈ {0, 1} pour chaque v ∈ V
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Triangles d’un graphe

Relaxation en programme linéaire

minimiser
∑
v∈V

x(v)

sous les contraintes x(u) + x(v) + x(w) ≥ 1 si (u, v) ∈ E et (v , w) ∈ E et (w , u) ∈ E
x(v) ≤ 1 pour chaque v ∈ V
x(v) ≥ 0 pour chaque v ∈ V
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Triangles d’un graphe

Triangle-Graphe-Approchée
Comment arrondir les variables de la solution du programme linéaire relaxé pour construire une
solution valide ?

▶ On veut au moins sélectionner un sommet pour chaque contrainte x(u) + x(v) + x(w) ≥ 1.
▶ Quelle valeur seuil doit franchir x(u) pour qu’on le conserve ?

Triangle-Graphe-Approchée(G)

C ← ∅
calculer x̄ , solution optimale du programme linéaire relaxé
pour tout v ∈ V faire

si x̄(v) ≥ 1/3 alors
C ← C ∪ {v}

retourner C
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Triangles d’un graphe

Complexité en temps

Quel est le nombre de variables et de contraintes ?

▶ Il y a |V | variables et O(V 3) contraintes.
▶ La résolution du programme linéaire relaxé peut donc se faire en temps polynomial.
▶ La procédure d’arrondissement consiste en |V | itérations.
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Triangles d’un graphe

Validité

▶ Pour chaque triangle (u, v) ∈ E , x(u) + x(v) + x(w) ≥ 1.
▶ x(u), x(v) ou x(w) vaut au moins 1/3 et est sélectionné dans la solution.
▶ Chaque triangle perdra donc un sommet.
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Triangles d’un graphe

Facteur d’approximation

▶ Soit S∗ la solution optimale.
▶ Soit z∗ la valeur de l’objectif optimale du programme linéaire relaxé : z∗ ≤ |S∗| (c’est une

borne inférieure de la valeur de l’objectif optimale).
▶ On va prouver que |S| ≤ 3z∗ (et on aura donc |S| ≤ 3|S∗|) :

z∗ =
∑
v∈V

x̄(v) ≥
∑
v∈S

x̄(v)

▶ Comme chaque sommet v est conservé si x̄(v) ≥ 1/3 :

z∗ ≥ 1
3 |S|
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Triangles d’un graphe

Optimalité du facteur d’approximation

Le facteur d’approximation 3 est-il optimal ?

Un graphe avec seulement un triangle. On pourrait avoir x̄(v1) = x̄(v2) = x̄(v3) = 1/3. On
aurait une solution avec 3 sommets.
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Triangles d’un graphe

Résultat formel

Théorème
Triangle-Graphe-Approchée est un algorithme d’approximation 3 à temps polynomial
pour le problème des triangles d’un graphe.
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Couverture d’ensemble

Problème de la couverture d’ensemble

▶ Un ensemble X et une famille F de sous-ensembles
de X : ∀S ∈ F , S ⊆ X .

▶ Chaque élément de X appartient à un sous-ensemble
de F : X =

⋃
S∈F S.

▶ Il faut déterminer quelle sous-famille C ⊆ F permet
de couvrir tous les éléments de X : X =

⋃
S∈C S.

▶ On cherche à minimiser le nombre des
sous-ensembles sélectionnés |C|.
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Couverture d’ensemble

Fréquence de l’élément le plus fréquent

▶ On note f la fréquence de l’élément qui apparaît dans le plus de sous-ensembles :

f = max
x∈X
|{S ∈ F : x ∈ S}|
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Couverture d’ensemble

Question
Que vaut f dans cet exemple ?

▶ 1
▶ 2

▶ 3
▶ 4
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Couverture d’ensemble

Question
Que vaut f dans cet exemple ?

▶ 1
▶ 2

▶ 3 ✓(tous les 2 dans S1 ∩ S2)
▶ 4
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Couverture d’ensemble

Question
Le problème de la couverture d’ensemble généralise le problème de la couverture de sommets :
une instance de ce dernier problème peut être convertie en instance pour le premier. Que vaut f ,
la fréquence de l’élément le plus fréquent, pour les instances issues de cette conversion ?

▶ 1
▶ 2

▶ 3
▶ 4
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Couverture d’ensemble

Formulation en programme entier

▶ La décision se porte sur chaque sous-ensemble que l’on conserve ou non. On définit donc
xS pour tout S ∈ F .

▶ L’objectif est de minimiser le nombre de sous-ensembles choisis.
▶ On introduit une contrainte par élément de X : au moins un sous-ensemble doit le couvrir.

minimiser
∑
S∈F

xS

sous les contraintes
∑

S∈F :x∈S
xS ≥ 1 pour chaque x ∈ X

x(v) ∈ {0, 1} pour chaque v ∈ V
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Couverture d’ensemble

Couverture-Ensemble-Approchée

Comment arrondir les variables de la solution du programme linéaire relaxé pour construire une
solution valide ?

Couverture-Ensemble-Approchée(X ,F)

C ← ∅
calculer x̄ , solution optimale du programme linéaire relaxé
pour tout S ∈ F faire

si x̄S ≥ 1/f alors
C ← C ∪ {S}

retourner C
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Couverture d’ensemble

Résultat formel

Théorème
Couverture-Ensemble-Approchée est un algorithme d’approximation f à temps
polynomial pour le problème de la couverture d’ensemble.
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Couverture d’ensemble

Preuve de la complexité en temps

Démonstration.
▶ Il y a |F| variables et |X | contraintes.
▶ La résolution du programme linéaire relaxé peut donc se faire en temps polynomial.
▶ La procédure d’arrondissement consiste en |X | itérations.
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Couverture d’ensemble

Preuve de la validité et du facteur d’approximation

Démonstration.
▶ Pour chaque élément x ∈ X , il y a au moins un sous-ensemble choisi grâce aux contraintes

et au choix de l’arrondi.
▶ L’arrondissement augmente la valeur de l’objectif d’un facteur f au maximum.
▶ Il s’agit donc bien d’un algorithme d’approximation f .
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Couverture d’ensemble

Optimalité du facteur d’approximation

Le facteur d’approximation f est-il optimal ?

n éléments et f sous-ensembles C qui contiennent tous les éléments.
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Conclusion

Résumé

▶ On peut concevoir des algorithmes d’approximation en temps polynomial en passant par la
modélisation en programmation entier puis la résolution de programmation linéaire relaxé.

▶ Cette modélisation nécessite de définir les variables de décision, l’objectif et les contraintes.
▶ L’approche s’appuie sur une relaxation du programme entier en programme linéaire, la

résolution de ce dernier, puis l’arrondissement des valeurs obtenues.
▶ On doit ensuite en analyser : sa complexité en temps, sa validité et son facteur

d’approximation (borne puis optimalité).
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Conclusion

Prochaines échéances

▶ Premier rendu intermédiaire du projet-tournoi le 6/10 (avant la prochaine séance).
▶ Second rendu intermédiaire du projet-tournoi le 20/10.
▶ Épreuve sur table le 23/10.
▶ Rendu final pour le projet-tournoi le 4/11.
▶ Épreuve de TP le 5/11.
▶ Restitution du projet-tournoi le 6/11.
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