
Optimisation
Ordonnancement de tâches indépendantes

Louis-Claude Canon
louis-claude.canon@univ-fcomte.fr

Master 2 Informatique – Semestre 9

Louis-Claude Canon Optimisation – Ordonnancement de tâches indépendantes 1 / 36

mailto:louis-claude.canon@univ-fcomte.fr

Plan

Introduction

Classification des problèmes

Analyse de problèmes classiques

Focus sur P||Cmax

Conclusion

Louis-Claude Canon Optimisation – Ordonnancement de tâches indépendantes 2 / 36

Introduction

Plan

Introduction

Classification des problèmes

Analyse de problèmes classiques

Focus sur P||Cmax

Conclusion

Louis-Claude Canon Optimisation – Ordonnancement de tâches indépendantes 3 / 36

Introduction

Définition

▶ Un problème d’ordonnancement (scheduling) consiste à organiser et optimiser dans le
temps la réalisation d’un ensemble de tâches, compte tenu de contraintes.

▶ Prise en compte simultanée des contraintes de temps et de ressources pour optimiser
l’exécution d’activités.

Louis-Claude Canon Optimisation – Ordonnancement de tâches indépendantes 4 / 36

Introduction

Représentations : DAG et diagramme de Gantt

Louis-Claude Canon Optimisation – Ordonnancement de tâches indépendantes 5 / 36

Introduction

Contextes applicatifs

L’ordonnancement est un problème qui concerne un grand nombre de domaines. Quelques
exemples de domaines :
▶ Production : ateliers (shop) ;
▶ Projets : gestion de projets ;
▶ Administration : gestion de ressources humaines, emploi du temps ;
▶ Informatique : exécution de programmes, optimisation de code.

Louis-Claude Canon Optimisation – Ordonnancement de tâches indépendantes 6 / 36

Introduction

Problème illustratif (1/2)

Notre problème : trouver un algorithme pour placer un ensemble de tâches sur des machines.

Louis-Claude Canon Optimisation – Ordonnancement de tâches indépendantes 7 / 36

Introduction

Problème illustratif (2/2)

Louis-Claude Canon Optimisation – Ordonnancement de tâches indépendantes 8 / 36

Introduction

Types d’approche

▶ Solution optimale : tester toutes les solutions (bruteforce) ou trouver un algorithme.
▶ Étude de la complexité du problème.
▶ Technique d’optimisation combinatoire.
▶ Bonne heuristique si problème difficile ou algorithme d’approximation (avec une

performance garantie).

Louis-Claude Canon Optimisation – Ordonnancement de tâches indépendantes 9 / 36

Classification des problèmes

Plan

Introduction

Classification des problèmes

Analyse de problèmes classiques

Focus sur P||Cmax

Conclusion

Louis-Claude Canon Optimisation – Ordonnancement de tâches indépendantes 10 / 36

Classification des problèmes

Notation α|β|γ

Classification à trois champs (Graham et al. 1979) :
α Caractéristiques des ressources.
β Caractéristiques des tâches.
γ Critère(s) à optimiser.

Louis-Claude Canon Optimisation – Ordonnancement de tâches indépendantes 11 / 36

Classification des problèmes

Les ressources : α

▶ Problème à une machine : α = 1
▶ Problème à m machines :

α = P machines identiques : une tâche a le même temps d’exécution quelque soit la
machine.

α = Q machines uniformes : les temps d’exécution sont proportionnels à la
performance des machines.

α = R machines indépendantes : certaines machines peuvent être spécialisées pour
certaines tâches.

Louis-Claude Canon Optimisation – Ordonnancement de tâches indépendantes 12 / 36

Classification des problèmes

Les ressources : β

▶ Ensemble de n tâches : T = {T1, . . . , Tn}.
▶ Temps d’exécution d’une tâche : pj .
▶ Date de fin (complétion) d’une tâche : Cj .

Louis-Claude Canon Optimisation – Ordonnancement de tâches indépendantes 13 / 36

Classification des problèmes

Les critères d’optimisation : γ

Sur l’ordonnancement global :
▶ Fin de l’ordonnancement (makespan) : γ = Cmax = maxj Cj .
▶ Somme des fins d’exécutions : γ =

∑
Cj .

▶ Débit (flow) : nombre de tâches finies par unité de temps.
▶ Avec pondération possible, multi-critères, etc.

Louis-Claude Canon Optimisation – Ordonnancement de tâches indépendantes 14 / 36

Classification des problèmes

Exemples illustratifs

1||Cmax Optimisation du temps d’exécution global (makespan) sur une seule machine.
1||

∑
wjCj Optimisation de la somme des temps d’exécution pondérés par wj sur une seule

machine.
P||Cmax Optimisation du makespan sur m machines identiques.

Louis-Claude Canon Optimisation – Ordonnancement de tâches indépendantes 15 / 36

Classification des problèmes

Organisation des problèmes

▶ Large gamme de problèmes issus de la combinaison des caractéristiques et d’un critère
d’optimisation.

▶ Il existe de nombreuses liens entre ces problèmes :
▶ certains sont identiques ;
▶ certains en généralisent d’autres (réduction).

▶ Soit P1 un problème généralisé par P2 (P1 ≤ P2) :
▶ Si P1 est NP-complet (difficile), P2 l’est aussi.
▶ Si un algorithme efficace résout P2, alors il résout aussi P1.

Louis-Claude Canon Optimisation – Ordonnancement de tâches indépendantes 16 / 36

Classification des problèmes

Réductions classiques

Louis-Claude Canon Optimisation – Ordonnancement de tâches indépendantes 17 / 36

Analyse de problèmes classiques

Plan

Introduction

Classification des problèmes

Analyse de problèmes classiques

Focus sur P||Cmax

Conclusion

Louis-Claude Canon Optimisation – Ordonnancement de tâches indépendantes 18 / 36

Analyse de problèmes classiques

1||Cmax (1/2)

▶ Ensemble de n tâches : T = {T1, . . . , Tn}.
▶ Temps d’exécution d’une tâche : pj .
▶ Ordre optimal pour optimiser le makespan Cmax ?

Louis-Claude Canon Optimisation – Ordonnancement de tâches indépendantes 19 / 36

Analyse de problèmes classiques

1||Cmax (2/2)

Ordonnancement sans délai (ou compact) :

Preuve triviale :
▶ borne directe sur le makespan optimal : OPT ≥

∑
j pj ;

▶ sans délai, le makespan est Cmax =
∑

j pj ≤ OPT.

Louis-Claude Canon Optimisation – Ordonnancement de tâches indépendantes 20 / 36

Analyse de problèmes classiques

1|| ∑ Cj (1/2)

▶ Ensemble de n tâches : T = {T1, . . . , Tn}.
▶ Temps d’exécution d’une tâche : pj .
▶ Ordre optimal pour optimiser la somme des fins d’exécution

∑
Cj ?

Louis-Claude Canon Optimisation – Ordonnancement de tâches indépendantes 21 / 36

Analyse de problèmes classiques

1|| ∑ Cj (2/2)

Shortest Processing Time (SPT) :
▶ Preuve par contradiction puis argument d’échange.
▶ Soit une solution optimale dans laquelle il existe 2 tâches non-ordonnées selon leurs temps

d’exécution (∃j , j ′ : Cj < Cj′ , pj > pj′) et dont l’objectif est OPT.
▶ Après échange des 2 tâches, toutes les N ≥ 0 tâches entre les tâches Tj et Tj′ finissent plus

tôt (décalage de pj − pj′).
▶ Le nouvel objectif devient : OPT − (N + 1) × (pj − pj′) < OPT.
▶ On obtient une solution meilleure ce qui contredit l’optimalité de la solution considérée.

Louis-Claude Canon Optimisation – Ordonnancement de tâches indépendantes 22 / 36

Analyse de problèmes classiques

P|pj = 1|Cmax

▶ Earliest Finish Time (EFT) ou ordonnancement compact au plus tôt.
▶ OPT =

⌈ n
m

⌉
.

Une borne directe pour le makespan optimal sur m machines : OPT ≤
⌈∑

j pj

m

⌉
.

Louis-Claude Canon Optimisation – Ordonnancement de tâches indépendantes 23 / 36

Analyse de problèmes classiques

P∞||Cmax

Une tâche par machine.

Louis-Claude Canon Optimisation – Ordonnancement de tâches indépendantes 24 / 36

Analyse de problèmes classiques

P||Cmax

▶ Ensemble de n tâches : T = {T1, . . . , Tn}.
▶ Temps d’exécution d’une tâche : pj .
▶ Ordre et répartition optimaux pour optimiser le makespan Cmax sur m machines identiques ?

▶ Problème difficile (NP-complet, Garey et Johnson 1978), pas de solution évidente.
▶ Le problème R||Cmax est donc aussi difficile (voir “réductions classiques”).

Louis-Claude Canon Optimisation – Ordonnancement de tâches indépendantes 25 / 36

Focus sur P||Cmax

Plan

Introduction

Classification des problèmes

Analyse de problèmes classiques

Focus sur P||Cmax

Conclusion

Louis-Claude Canon Optimisation – Ordonnancement de tâches indépendantes 26 / 36

Focus sur P||Cmax

Algorithme (ou heuristique) de liste

Définition :
▶ Les tâches sont ordonnées en liste en fonction d’un critère :

▶ LPT/SPT : Longest/Shortest Processing Time First.
▶ Aléatoire.

▶ Dès qu’une machine est disponible, elle exécute la première tâche de la liste
(ordonnancement compact et au plus tôt).

▶ Robuste : utilisable même si les temps d’exécution pj ne sont pas connus et avec un ordre
aléatoire.

Louis-Claude Canon Optimisation – Ordonnancement de tâches indépendantes 27 / 36

Focus sur P||Cmax

Borne de Graham : résultat (1/3)
Résultat :
▶ Soit LST le makespan obtenu via un algorithme de liste.
▶ On peut borner la performance de cet algorithme : LST

OPT ≤ 2 − 1
m .

▶ On dit qu’il s’agit d’un algorithme d’approximation (2 − 1
m).

Propriétés utilisées dans la preuve :
▶ Borne sur le temps d’exécution maximum : OPT ≥ maxj pj ;
▶ Borne sur la charge moyenne : OPT ≥ 1

m
∑

j pj ;
▶ Un algorithme de liste commence les tâches au plus tôt.

Louis-Claude Canon Optimisation – Ordonnancement de tâches indépendantes 28 / 36

Focus sur P||Cmax

Borne de Graham : preuve (2/3)

▶ Soit C1
max la première date à laquelle au moins une machine devient disponible.

▶ Pas de délai avant C1
max (ordonnancement compact et au plus tôt) :

m × C1
max + C ≤

∑
j pj et donc C1

max ≤ OPT − C
m .

▶ Pas de tâche commençant après C1
max (sinon, elle aurait été commencée à la date C1

max
puisqu’au moins une machine devient disponible) : C ≤ maxj pj et donc C ≤ OPT.

▶ Intégration : LST = C1
max + C ≤ (2 − 1

m) × OPT.

Louis-Claude Canon Optimisation – Ordonnancement de tâches indépendantes 29 / 36

Focus sur P||Cmax

Borne de Graham : optimalité (3/3)

Quelle instance (i.e. nombre de tâches et temps d’exécution) permet d’obtenir le plus mauvais
facteur d’approximation pour un algorithme de liste pour m = 2 machines ?

▶ {pj} = {1, 1, 2}.
▶ Dans ce cas, le facteur d’approximation est bien 2 − 1

m = 3
2 .

▶ Comme c’est aussi le cas pour chaque valeur de m, on dit que la borne de Graham est
optimale (ou tight).

Louis-Claude Canon Optimisation – Ordonnancement de tâches indépendantes 30 / 36

Focus sur P||Cmax

Borne de Graham : optimalité (3/3)

Quelle instance (i.e. nombre de tâches et temps d’exécution) permet d’obtenir le plus mauvais
facteur d’approximation pour un algorithme de liste pour m = 2 machines ?

▶ {pj} = {1, 1, 2}.
▶ Dans ce cas, le facteur d’approximation est bien 2 − 1

m = 3
2 .

▶ Comme c’est aussi le cas pour chaque valeur de m, on dit que la borne de Graham est
optimale (ou tight).

Louis-Claude Canon Optimisation – Ordonnancement de tâches indépendantes 30 / 36

Focus sur P||Cmax

LPT : résultat (1/2)
▶ Longest Processing Time first.
▶ Heuristique de liste très répandue et intuitive : priorité aux tâches de poids maximum.
▶ Complexité en temps : O(n log(n)).
▶ Facteur d’approximation optimal : LPT

OPT = 4
3 − 1

3m .

Louis-Claude Canon Optimisation – Ordonnancement de tâches indépendantes 31 / 36

Focus sur P||Cmax

LPT : pire cas (2/2)

Quelle instance permet d’obtenir le plus mauvais ratio pour LPT ?
▶ Exercice vu en TD.
▶ Pour m = 2, le ratio est 7

6 . On peut chercher une instance qui donnerait un makespan de 7
avec LPT alors que la valeur de l’objectif optimale serait à 6.

▶ On sait aussi que LPT mettra les grandes tâches en premier alors que ce ne sera pas
forcément le cas dans l’ordonnancement optimal.

Louis-Claude Canon Optimisation – Ordonnancement de tâches indépendantes 32 / 36

Focus sur P||Cmax

LPT : pire cas (2/2)

Quelle instance permet d’obtenir le plus mauvais ratio pour LPT ?
▶ Exercice vu en TD.
▶ Pour m = 2, le ratio est 7

6 . On peut chercher une instance qui donnerait un makespan de 7
avec LPT alors que la valeur de l’objectif optimale serait à 6.

▶ On sait aussi que LPT mettra les grandes tâches en premier alors que ce ne sera pas
forcément le cas dans l’ordonnancement optimal.

Louis-Claude Canon Optimisation – Ordonnancement de tâches indépendantes 32 / 36

Focus sur P||Cmax

MULTIFIT : résultat (1/2)

▶ Recherche dichotomique sur le makespan entre
⌈
max(1

m
∑

j pj , maxj pj)
⌉

et⌈
max(2

m
∑

j pj , maxj pj)
⌉
.

▶ Pour chaque makespan considéré : application de l’heuristique First-Fit-Decreasing (FFD).
▶ Complexité en temps : O(n log(n) + n log(m)).
▶ Facteur d’approximation optimal : MULTIFIT

OPT = 13
11 .

Louis-Claude Canon Optimisation – Ordonnancement de tâches indépendantes 33 / 36

Focus sur P||Cmax

MULTIFIT : FFD (2/2)
▶ On tri les tâches par temps d’exécution décroissant.
▶ On commence par une seule machine.
▶ Pour chaque tâche : on l’ordonnance sur la première machine qui peut la terminer avant le

makespan considéré.
▶ Si aucune machine ne le permet, on en rajoute une jusqu’à m.
▶ Si toutes les tâches n’ont pas été ordonnancées, FFD échoue.

Louis-Claude Canon Optimisation – Ordonnancement de tâches indépendantes 34 / 36

Conclusion

Plan

Introduction

Classification des problèmes

Analyse de problèmes classiques

Focus sur P||Cmax

Conclusion

Louis-Claude Canon Optimisation – Ordonnancement de tâches indépendantes 35 / 36

Conclusion

Prochaines échéances

▶ Second rendu intermédiaire du projet-tournoi le 20/10.
▶ Épreuve sur table le 23/10.
▶ Rendu final pour le projet-tournoi le 4/11.
▶ Épreuve de TP le 5/11.
▶ Restitution du projet-tournoi le 6/11.

Louis-Claude Canon Optimisation – Ordonnancement de tâches indépendantes 36 / 36

	Introduction
	Classification des problèmes
	Analyse de problèmes classiques
	Focus sur P||C
	Conclusion

