TD Optimisation — session 4 — Scheduling Independent Tasks

17 octobre 2025

Learning objective : find extreme instances showing the tightness of approximation ratios for classical
scheduling strategies and their behaviors for the problem P||Cipax-

The first 4 exercises are essential.

Exercice 1 : (2 —1/m) ratio for LST
Recall that LST has two properties :
1. task order is arbitrary;
2. each task is put on the first available processor.
To identify a worst-case instance, we need to define :
— the number of processors m ;
— the number of tasks n, their costs and their order.
Recall the worst-case instance with m = 2. What is the worst-case instance with m =37

Hint : start by considering an arbitrary instance with a few tasks, draw the Gantt diagram obtained
with LST and compare it with the optimal one.

Pour m =2

T {pi} = {17 1’2}

- Cmax(LST)/Cmax(OPT) = 3/2
Pour m =3 :

— {pi}=1{1,1,1,1,1,1,3}

— Cmax(LST)/Cinax(OPT) =5/3

Exercice 2 : (4/3 — 1/3m) ratio for LPT
Recall that LPT has two properties :

1. task are ordered by decreasing cost ;
2. each task is put on the first available processor.

To identify a worst-case instance, we need to define :

— the number of processors m ;

— the number of tasks n and their costs.

What is the worst-case instance with m =27

Hint : the objective is to build an instance for which the optimal schedule is different than the one
given by LPT. While the largest task is necessarily on any processor in both cases, the second largest

task can be on the same processor in the optimal solution while it is necessarily on the other processor
for LPT.

As a second hint (before looking the solution below), the worst-case instances has 2 long tasks
(on the same processor in the optimal schedule) and 3 shorter tasks (on the other processor).
— m=2
— {pi} =1{3.,3,2,2,2}
- Cmax(LPT)/Cmax(OPT) = 7/6




Exercice 3 : 13/11 ratio for MULTIFIT
MULTIFIT relies on a binary search to find the best possible objective value (makespan). For each
considered makespan, it uses FFD to try producing a valid schedule. FFD considered tasks by
decreasing cost and assign each of them to the first processor (starting with only one processor and
adding a new one anytime a task does not fit). If it ends up with more than m processors, the schedule
is invalid.
To identify a worst-case instance, we need to define :
— the number of processors m;
— the number of tasks n and their costs.

Find an instance for which MULTIFIT is not optimal ?

Hint : with m = 2 processors, the worst-case ratio is %.

As a second hint (before looking the solution below), the worst-case instances has 2 long tasks
(on different processors in the optimal schedule) and 4 shorter tasks. This is actually the opposite
of the worst-case instance for LPT.

— m=2

— {p:}=1{3,3,2,2,2,2}

— when trying the optimal makespan 7, FFD schedules both longest tasks on the same

processors and fails to schedule the last one
— Coax(MULTIFIT)/Crax(OPT) = 87

Exercice 4 : Proof of 2-approximation ratio for MULTIFIT
By observing the basic bounds to achieve the 2-approximation ratio for the list heuristics, provide
the reasoning to prove that MULTIFIT heuristic is also a 2-approximation algorithm. We can first
prove a result on FFD and deduce the 2-approximation ratio from it. What is the FFD property we
must prove to show that MULTIFIT is a 2-approximation ? How can we prove this property (recall
and use the 2 basics bounds on Cy,ax(OPT) for this problem) ?

To show that MULTIFIT is a 2-approximation, we must show that FFD always succeeds to
schedule all the tasks with a candidate makespan of 2C,.x(OPT).

The basic bounds we need are max; p; < Cmax(OPT) and Zj Pj < MCrax(OPT).

We can now proceed by contradiction : assume that FFD fails to schedule at least one task when
the candidate makespan is 2C,.x(OPT).

In this case, there is not enough available time on all processors when this task is considered. We
can deduce that all processors are busy until at least Cppax(OPT') by observing that even with
the longest task (shorter tasks would lead to the same conclusion), max; p; < Cyax(OPT).

If all processors are busy until at least Cpax(OPT), then the sum of the time spent processing
tasks is greater than mCi,.x(OPT'), which is greater than or equal to the sum of all processing
times (second basic bounds). This means that all tasks have been processed, leading to a
contradiction because we assumed that FFD failed to schedule one task.

Exercice 5 : SLACK
SLACK est un algorithme plus récent (Della Croce et Scatamacchia, 2020) basé sur la stratégie
gloutonne suivante :
— Trier les taches par ordre décroissant de leur taille;
— Découper I'ensemble trié en tuples de m taches;
— Soit “slack” la différence entre la taille du premier job et la taille du dernier job de chaque tuple;
— Trier I’ensemble des tuples dans ’ordre décroissant de leur “slack”.

SLACK a une complexité en temps de O(nlog(n) + nlog(m)).



Algorithme 1 : SLACK

Data : instance de P||Cpax, avec
m machines,
n jobs et leur temps d’exécution
1 réindexer les jobs, de maniere a obtenir p; > ps > ... > p,
2 découper I’ensemble obtenu en [ 2] tuples de m jobs (ajout de jobs “dummy” de taille nulle pour
le dernier tuple, si n n’est pas un multiple de m)
3 considérer chaque tuple avec la différence de temps (“Slack”) entre le premier job du tuple et le
dernier.

{ {1,....om} {m+1,...,2-m} }

P1— Pm Pm+1 — P2.m

trier les tuples par ordre décroissant de “Slack” et ainsi former un nouvel ensemble // e.g:
{{m+1,...,2-mH1,....m}} si pm+1— P2m > P1 — Pm-
5 appliquer 'ordonnancement (affectation & la machine la moins chargée & ce moment 1a) a
I’ensemble ainsi obtenu.

Dérouler SLACK sur un exemple simple avec m = 3 et {p;} = {11,10,7,6,5,5,5, 3, 2}.
Trouver une instance donnant un makespan différent avec SLACK et LPT.
Indice : LPT se comporte mal si les plus petites taches (les derniéres considérées) sont trés hétérogenes.

— m=2

— n==6

— {pi} =1{5,4,4,3,3,1}
— Chax(SLACK) =9
— Chax(LPT) =11

Exercice 6 : Proof of 2-approximation ratio for LST
Provide the basic bounds to achieve the 2-approximation ratio for list heuristics. Which properties of
those heuristics is noteworthy for this proof. Provide the reasoning of the rest of the proof.

See lecture.




