TP Optimisation — session 3 — Algorithmes d’approximation

3 novembre 2025

Objectif d’apprentissage : cette séance vise a concevoir des instances pathologiques pour des algo-
rithmes d’approximation vus en cours. On combinera deux approches :

— la réflexion issue de ’analyse de l'algorithme et de ses limites;

— l'exploration empirique basée sur de la génération aléatoire.
C’est en combinant ces deux approches que I’on maximise les chances de trouver la pire instance patho-
logique.

1 Couverture gloutonne

Le professeur Sourire propose I’heuristique suivante pour résoudre le probleme de la couverture de
sommets. On choisit de fagon répétée un sommet de plus haut degré, et on supprime toutes ses arétes
incidentes. En cas d’égalité (pour simplifier la recherche d’un pire cas), on choisira le sommet d’indice
maximal. On s’arréte lorsqu’il n’y a plus d’arétes. On souhaite construire une instance dont le facteur
d’approximation soit le plus large possible.

Pour cela, on commence par créer un graphe quelconque qui facilitera I'implémentation de I’heuris-
tique en fournissant la structure sur laquelle on travaille :

import networkx as nx

G = nx.Graph()

G.add_nodes_from([1, 2, 3, 4])

print (G.nodes())

G.add_edges_from([(1, 2), (2, 3), (1, 3), (3, 1)
print (G.edges())

print (G[3])

On va maintenant implémenter deux méthodes :

— verifier_couverture qui retourne vrai si une couverture donnée est valide pour un graphe
donné;

— heuristique_Sourire qui génere une couverture pour un graphe.

def verifier_couverture(G, C):
#T0ODO

def heuristique_Sourire(G):
#T0ODO

print(verifier_couverture(G, [1, 2, 4]1))
print (heuristique_Sourire(G))

Vous pourrez utiliser la méthode copy pour copier le graphe afin de pour enlever des sommets sans
modifier le graphe donné en argument.

On va désormais construire une instance pour laquelle I’heuristique du professeur Sourire est arbi-
trairement mauvaise. L’instance aura une structure de graphe biparti avec n sommets a gauche. Ensuite,
pour tout 1 <14 < n, on rajoute k = [n/i| sommets & droite de degré i, tous connectés aux sommets de
gauche qui ont le plus petit degré. Voici I'exemple pour n =1 :



® &)

Voici 'exemple pour n = 2 :

Voici 'exemple pour n =4 :

De la méme maniére pour n = 5, on a 5 sommets a gauche et on rajoutera a droite 5 sommets de
degré 1, 2 sommets de degré 2, 1 sommet de degré 3, 1 sommet de degré 4 puis 1 sommet de degré 5.

On peut vérifier que I'ensemble des sommets de gauche constitue une couverture et que 1’heuris-
tique retourne une couverture de taille supérieure (I’ensemble des sommets de droite) avec un ratio qui
augmente avec n.

Pour quelle valeur de n obtient-on un facteur qui dépasse 27



2 Couverture-Ensemble-Glouton

L’approche précédente consiste a concevoir spécifiquement une instance qui exploite une faille de
I’heuristique. Une autre approche consiste a générer aléatoirement des instances pour étudier le compor-
tement.

Nous allons maintenant générer des mots pour le probléeme de la couverture d’ensembles afin de
déterminer s’il existe une instance dont le facteur d’approximation dépasse le 3.

Il faudra calculer I'optimal pour évaluer la qualité de ce que retourne l’algorithme d’approximation.
Cette recherche ne sera donc utilisable que pour des petites instances (10 mots au maximum).

On va préparer la recherche en codant 3 parties : la construction d’une instance; le calcul de la
couverture optimale ; 'implémentation de ’algorithme d’approximation.

Pour la construction de I’instance, on générera n mots de 1 a k caractéres. Le code suivant génére un
mot aléatoire avec des caracteres distincts :

import random, string

k =10
''.join(set(random.choice(string.ascii_lowercase) for _ in range(k)))

Coder une fonction qui génére une instance paramétrée par n et k :
On peut désormais calculer une couverture optimale. On évaluera toutes les couvertures et on choisira
la meilleure. Pour générer toutes les combinaisons, on peut s’appuyer sur la bibliotheque itertools :

import itertools
itertools.combinations(mots, 3)

Il ne reste plus qu’a implémenter COUVERTURE-ENSEMBLE-GLOUTON.

On peut commencer la recherche empirique. Il faut tdtonner en gérant les parametres numériques
suivant :

— le nombre de mots n;

— la longueur des mots k;

— le nombre de lettres distinctes (on ignorera ce paramétre).

Quelle est Pinstance la plus petite qui dépasse 3/27



	Couverture gloutonne
	Couverture-Ensemble-Glouton

